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Abstract 

This paper evaluates out-of-sample exchange rate forecasting with Purchasing Power Parity (PPP) 

and Taylor rule fundamentals for 9 OECD countries vis-à-vis the U.S. dollar over the period from 

1973:Q1 to 2009:Q1 at short and long horizons. In contrast with previous work, which reports 

“forecasts” using revised data, I construct a quarterly real-time dataset that incorporates only the 

information available to market participants when the forecasts were made. Using bootstrapped out-

of-sample test statistics, the exchange rate model with Taylor rule fundamentals performs better at 

the one-quarter horizon and panel estimation is not able to improve its performance. The PPP 

model, however, forecasts better at the 16-quarter horizon and its performance increases in panel 

framework. The results are in accord with previous research on PPP and Taylor rule models.  
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1. Introduction 

Following the collapse of the Bretton-Woods system, the introduction of flexible exchange 

rate regimes attracted much attention to the area of international macroeconomics in an attempt to 

explain exchange rate behavior. Theoretical papers such as Dornbusch (1976), which extended the 

Mundell-Fleming model to incorporate rational expectations and sticky prices and introduced 

overshooting as an explanation for high exchange rate variability, and empirical work such as 

Frankel (1979), which found success in estimating empirical exchange rate models, inspired research 

in this field by pointing out the ability of macroeconomic models to explain exchange rate variability.  

The seminal papers by Meese and Rogoff (1983a, 1983b) put an end to the atmosphere of 

optimism in exchange rate economics by concluding that empirical exchange rate models do not 

perform better than a random walk model out-of-sample. Their finding is still hard to overturn more 

than two decades later. Cheung, Chinn, and Pascual (2005), for example, examine out-of-sample 

performance of the interest rate parity, monetary, productivity-based and behavioral exchange rate 

models and conclude that none of the models consistently outperforms the random walk at any 

horizon.  

Are empirical exchange rate models really as bad as we think? Recent studies have found 

evidence of exchange rate predictability using either panels or innovative modeling approaches. 

Engel, Mark, and West (2008) use panel specifications of the monetary, Purchasing Power Parity 

(PPP) and Taylor (1993) rule models, Rossi (2006) uses the monetary model in the presence of a 

structural break, Gourinchas and Rey (2007) use an external balance model, Molodtsova and Papell 

(2009) use a heterogeneous symmetric Taylor rule model with smoothing, and Cerra and Saxena 

(2010) use a broad panel specification of the monetary model. 



2 

 

A common problem with the papers discussed above is their reliance on ex-post revised data 

for the forecasting analysis. Macroeconomic data are updated when new data become available and 

frequently revised over time. These revisions can be substantial and were not available to either 

policymakers or market participants at the time forecasts were made. Therefore, out-of-sample 

forecast evaluations based on ex-post revised data yield misleading inference about the exchange rate 

models, and information problems of market agents are not accounted in the analysis. As Rossi 

(2005) emphasizes, to forecast economic variables which are driven by persistent and permanent 

shocks, the econometrician might measure agent’s probability distribution poorly by using actual 

realized values of future explanatory variables. To forecast exchange rates, which are primarily 

driven by expectations, real-time data would be more advantageous due to capturing the information 

set of market participants as closely as possible in contrast to ex-post revised data and actual realized 

values of future explanatory variables. 

Out-of-sample forecasts of exchange rate models may be influenced by data revisions in 

many different ways. First, estimated parameters of the candidate models will vary because the data 

used for in-sample estimation is different. Changes in the parameter estimates could be striking if 

the forecasting model contains a latent variable whose value is subject to variation due to data 

revisions, such as output gap in Taylor rule models. Second, changes in parameter estimates induce 

candidate models to produce different one- and multi-step ahead out-of-sample forecasts. 

Consequently, out-of-sample inferences based on forecast errors may suggest selecting a different 

model. Third, due to differences in timing and magnitudes of data revisions across countries, model 

specifications themselves can be subject to change. More specifically, forecasts generated with time-

series regressions in real-time could dominate panel specifications when the level of heterogeneity, 

arises from differences in data revisions across countries, is high. Although all of the above-
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mentioned reasons suggest that out-of-sample predictive ability of exchange rate models should be 

evaluated using real-time data, it is still very rare in the exchange rate literature. 

The first paper to use real-time data to evaluate nominal exchange rate predictability is Faust, 

Rogers and Wright (2003). Examining the predictive ability of Mark’s (1995) monetary model using 

real-time data for Japan, Germany, Switzerland and Canada vis-à-vis the U.S, they report that the 

models consistently perform better using real-time data than fully revised data. However, none of 

the models perform better than the random walk model. More recently, Molodtsova, Nikolsko-

Rzhevskyy, and Papell (2008, 2011) find evidence of predictability with Taylor rule fundamentals 

using real-time data for the Deutschmark/dollar and Euro/dollar exchange rates. Molodtsova, 

Nikolsko-Rzhevskyy, and Papell (2008) find evidence of out-of-sample predictability with Taylor 

rule fundamentals only using real-time data as opposed to ex-post revised data and confirm the 

conclusion of Faust, Rogers and Wright (2003) that exchange rate dynamics might react more to the 

market’s contemporaneous beliefs about the fundamentals than true underlying fundamentals. 

There are no studies on exchange rate forecasting with real-time data for a reasonably large 

number of countries over the post Bretton Woods period because of the limited availability of real-

time data for countries other than the U.S. In this paper, I construct a quarterly real-time dataset that 

contains 9 OECD countries (Australia, Canada, France, Germany, Italy, Japan, Netherlands, 

Sweden, the United Kingdom)  vis-à-vis the U.S. dollar over the period from 1973:Q1 to 2009:Q1 to 

evaluate both short and long-horizon out-of-sample forecasting performance of the linear exchange 

models using PPP and Taylor rule fundamentals. I construct real-time price and inflation data from 

the International Financial Statistics (IFS) country pages using the consumer price index (CPI), and 

estimate real-time output gaps using the industrial production index. 
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A problem associated with recent papers presenting evidence of exchange rate predictability 

is that these studies employ only a test developed by Clark and West (2006) (henceforth, CW test). 

The CW statistic adjusts the Diebold and Mariano (1995) and West (1996) (henceforth, DMW test) 

statistic to correct for size distortions. If two models are non-nested, the DMW test is appropriate to 

compare the mean square prediction errors (MSPE’s). Applying DMW test to compare the MSPE’s 

of two nested models, however, leads to non-normal test statistics, and using standard normal 

critical values usually results in very poorly sized tests with far too few rejections of the null. This is a 

problem for out-of-sample exchange rate forecasting because, since the null is a random walk, all 

tests with structural models are nested. While the CW adjustment produces a test with correct size, 

Rogoff and Stavrakeva (2008) argue that it cannot evaluate forecasting performance because it does 

not test the null hypothesis of equal MSPE’s of the random walk and the structural model. In order 

to satisfy the conditions for a “good” exchange rate forecasting model, empirical studies need to 

present evidence that the exchange rate model has MSPE that is significantly smaller than that of the 

random walk model, which cannot be done solely with CW test in the case of forecasting bias.1 They 

advocate the use of DMW tests with bootstrapped critical values to produce correctly sized tests.  

Engel, Mark, and West (2008) find that panel error-correction exchange rate models with 

PPP fundamentals are able to produce large improvements in out-of-sample forecasting at longer 

horizons.2 Because they use ex-post revised data, the exchange rate models in their study contain 

future information that was not available to market participants. “Forecasts” that are produced using 

future news in the information set of the linear model cannot be evaluated within an out-of-sample 

                                                           

1 Rogoff and Stavrakeva (2008) consider the scale bias where the observed value is over- or under predicted 

by a certain percent. 
2 Engel, Mark, and West (2008) use monetary and Taylor Rule models as well. However, the out-of-sample 

predictability of the PPP model dominates the other two models at longer horizons. 
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forecasting exercise. Forecasts with real-time data, however, do not contain any unrealized future 

information in the information set of the linear model, and thus are a true out-of-sample forecast. 

Molodtsova and Papell (2009) find evidence of out-of-sample predictability with the Taylor 

model at short horizon using single-equation estimation. Although they use ex-post revised data to 

calculate inflation, they estimate output gaps with quasi-real-time data in order to capture the 

information available to central banks as closely as possible. Quasi-real-time data is constructed with 

ex-post revised data, but the trends do not contain future observations and the data points are used 

with a lag for estimation. While quasi-real-time data does not contain future observations, it captures 

revisions which are not available to market participants. Therefore, forecasting exercises with quasi-

real time data are also not true out-of-sample forecasts.              

This paper reevaluates out-of-sample predictive ability of PPP and Taylor rule-based 

exchange rate models that might have produced fragile conclusions with revised data in the earlier 

studies. Using a newly constructed real-time dataset for 9 OECD countries vis-à-vis the U.S. dollar, 

out-of-sample forecasting power of PPP and Taylor rule models are investigated within single-

equation and panel frameworks based on bootstrapped DMW and CW test statistics.3 The out-of-

sample forecasting results with PPP fundamentals confirm the findings in Engel, Mark, and West 

(2008) that the predictability of the PPP model increases with the panel specification and the PPP 

model has higher predictive power at long horizons. Evidence of long-term predictability with the 

PPP model is found for 7 out of 9 countries with the CW test and 5 out of 9 countries with the 

DMW test against the driftless random walk. The exchange rate model with PPP fundamentals using 

panel data outperforms the random walk with drift for all the countries in the sample at the 16-

quarter horizon regardless of which test statistic is used.  

                                                           

3 I would like to evaluate the out-of-sample forecasting ability of the monetary model. However, it is not 

possible to obtain a coherent series of real-time money supply for all the countries.    
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The predictability with Taylor rule fundamentals, in contrast, is greatest with the single-

equation specification, and the Taylor rule model has higher forecasting power at the short horizon 

as indicated in Molodtsova and Papell (2009). Evidence of short-term predictability with Taylor rule 

model is found for 1 out of 9 countries with both test statistics against the driftless random walk 

with single-equation estimation. The exchange rate model with Taylor rule fundamentals using a 

single-equation framework outperforms the random walk with drift for 3 out of 9 countries with the 

CW test and 5 out of 9 countries with the DMW test at the one-quarter horizon. 

The results are in accord with previous research on PPP and Taylor rule models. The PPP 

model works best with the panel specification at the 16-quarter horizon. Research on PPP shows no 

evidence of short-run PPP, and Papell (1997) finds considerably more support for long-run PPP 

with panel methods than with univariate tests. Since the persistence of deviations from PPP is 

relatively homogeneous across countries, panels help to reduce the noise and increase the 

forecasting power of the PPP model.  

Out-of-sample forecasts that are based on pooled Taylor rules with fixed effects, however, 

are unable to outperform time-series regression forecasts. A number of studies have found evidence 

that monetary policy rules implemented by central banks are subject to substantial heterogeneity. 

For example, Clarida, Gali and Gertler (1998) provide empirical evidence of how interest rate 

reaction functions vary among OECD countries. Gerdesmeier, Mongelli and Roffia (2007) compare 

the monetary policies implemented by the Eurosystem, the Fed and the Bank of Japan, and find 

considerable differences. Thus, weak forecasting performance of Taylor rules in panel specification 

may reflect heterogeneity in adjustment to equilibrium. As Mark and Sul (2012) emphasize, when the 

heterogeneity is great, panels do not generate more accurate forecasts than time-series regressions. 

Since central banks target short-term nominal interest rates as the instrument of monetary policy, 
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higher forecasting power of the Taylor rule model in a single-equation framework at the short 

horizon is plausible. 

 

2. Data 

The real-time quarterly data used in this study covers the post-Bretton Woods period from 

1973:Q1 to 2009:Q1 for 10 OECD countries: Australia, Canada, France, Germany, Italy, Japan, 

Netherlands, Sweden, the United Kingdom, and the United States. The dataset is constructed from 

the country tables of IMF's International Financial Statistics (IFS) books, regularly published on a 

monthly basis since 1948. The real-time data has the usual triangular format with vintage dates on 

the horizontal axis and calendar dates for each observation on the vertical axis. The term vintage 

corresponds to the date when a time series of data becomes available to market participants. There is 

typically a one-quarter lag between the vintage date and the latest data point at that vintage. The real-

time data at time t actually represents data through period t-1. For each subsequent quarter, the new 

vintage includes both newly released data and revisions to the historical data. The first vintage in the 

real-time dataset is for 1973:Q1 and the data series in each vintage start from 1958:Q1.     

Seasonally adjusted industrial production index (IFS line 66c) is used as a measure of 

countries’ income, since quarterly GDP data are not consistently published and not available for 

some countries for much of the time span. The price level in the economy is measured by the 

consumer price index (CPI) (IFS line 64) and seasonally adjusted by applying a one-sided moving 

average of the current observation and 3-lagged values. The inflation rate is the annual inflation rate 

calculated using the CPI over the previous 4 quarters.   
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The output gap is calculated as the percentage deviation of actual output from a Hodrick-

Prescott (1997) (HP) trend.4 For the first vintage, the trend is calculated using the data for 1958:Q1-

1972:Q4, for the second vintage, it is calculated using the data for 1958:Q1-1973:Q1, and so on.  As 

with any method that uses a one-sided filter, the estimations might be subject to end-of-sample 

uncertainty which is exacerbated with real-time data, consisting of the last observations in each data 

vintage. To take into account the end-of-sample uncertainty in output gap estimation using real-time 

data, I follow Watson’s (2007) method using an AR (8) model to forecast the output growth 12-

quarters ahead before calculating the trend.5 6 

The release dates for real-time variables vary across countries and the timing of data release 

is very crucial for forecast evaluation. For example, the industrial production index for Germany is 

released approximately 38 days after the end of the reference month, while the U.S. industrial 

production index is released from 12 to 18 days after the reference month. To minimize the time 

between the release of the data and the start of the forecast, the quarterly real-time dataset is 

constructed using the data available in second month of each quarter. Nominal exchange rates are 

taken from the IFS CD-ROM (IFS line ae) defined as the end-of-period U.S. dollar price of a unit of 

foreign currency.7 Exchange rates for the Euro area after 1998 are normalized by fixing foreign 

currency per dollar to the Euro/Dollar rate as in Engel, Mark, and West (2008).  

                                                           

4 The smoothness parameter for HP filter is 1600 with quarterly data. 
5 While Watson (2007) also suggests to backcast the series, the series in each data vintage extends through 

1958:Q1, which is long enough to remove the distortions in the beginning of the sample created by a one-
sided filter.   
6 HP Filter is selected as the most commonly used filter in the literature. Ince and Papell (2013) also provide 

the evidence that correlations between real-time and ex-post output gap estimates with different filters for the 

same countries are similar. 
7 Since quarterly averaged exchange rates might cause serial correlation for exchange rate changes, I use the 
end-of-period exchange rates. 
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 The series of real-time inflation and output gaps are constructed from the diagonal elements 

of the real-time data matrix and contain only the latest available observations at each period. For 

each country, this data represents a vector of quarterly observations from 1973:Q1 to 2009:Q1, thus 

resulting in 145 observations. 

Table 1 presents summary statistics for real-time and revised inflation and output gap for 

each country in the sample. Two observations are apparent: First, the differences between average 

real-time and revised inflation rates are very close as opposed to the differences between average 

real-time and revised output gaps. The differences between the average real-time and revised 

inflation varies from 0.001 percentage points (for Japan) to 0.076 percentage points (for U.K.), while 

the difference between the average real-time and revised output gap varies from 0.725 percentage 

points (for Sweden) to 2.134 percentage points (for Italy). Second, average real-time output gaps are 

negative for all the countries, which implies that the output gaps are being revised upwards on 

average. According to the summary statics in Table 1, policy recommendations based on real-time 

and revised data may differ substantially with most of the differences coming from the revisions in 

output gaps. 

 

3. Methodology 

The econometric analysis in this study is based on panel estimation of the predictive 

regression,   

                                                                                                            (1) 



10 

 

where  and .8 In the predictive regression,  denotes the natural 

log of the nominal exchange rate, measured as the domestic price of U.S. dollar (which serves as 

base currency) for country i at time t. The deviation of the exchange rate from its equilibrium value 

is denoted by , and  stands for the fundamental in the exchange rate model that is determined 

either by PPP or Taylor rule. The forecast horizon , takes on the value of 1 for short-horizon and 

16 for long-horizon regressions. The regression error, , contains unobserved components, where 

 is the individual specific effect,  is the time-specific effect, and  is the residual idiosyncratic 

error.  

3.1 PPP Fundamentals  

Numerous studies that test for unit roots in real exchange rates using panels of industrialized 

countries have found strong rejections in the post-1973 period. The strong rejections of unit roots 

encourage testing the forecasting power of exchange rate models with PPP fundamentals. Recently, 

Engel, Mark, and West (2008) have shown that PPP fundamentals forecast well at long horizons. 

Rogoff and Stavrakeva (2008) also conclude that PPP specification performs the best out of all the 

specifications they try.9  

Under PPP fundamentals,  

                                                                                                                               (2) 

                                                           

8 For single-equation framework, time-specific effect is zero. 
9 Rogoff and Stavrakeva (2008) compare the forecasting power of the monetary model, the Taylor rule model 

and a structural model based on the Backus-Smith optimal risk sharing condition.  
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where   is the log of the U.S. price level, and  is the log of the price level of country i. I use the 

real-time CPI to measure of the national price level. Substituting PPP fundamentals (2) into equation 

(1), I use the resultant equation for forecasting.  

  

3.2 Taylor Rule Fundamentals 

When central banks set the interest rate according to the Taylor rule, the linkage between the 

exchange rate and a set of fundamentals can be examined. According to Taylor (1993), central banks 

set the monetary policy as: 

                                                                                     (3) 

where  is the target for the short-term nominal interest rate,  is the inflation rate, is the target 

level of inflation, is the output gap, or percent deviation of actual output from an estimate of its 

potential level, and is the equilibrium level of the real interest rate. It is assumed that the target for 

the short-term nominal interest rate is achieved within the period, so that there is no distinction 

between the actual and target nominal interest rate. 

The parameters  and  in equation (3) can be combined into one constant term 

 and we have: 

                                                                                                                      (4) 

where . If the central bank sets the target the level of exchange rate to make PPP hold, 

equation (4) becomes: 

                                                                                                            (5)                             
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where  is the real exchange rate. The central bank increases (decreases) the nominal interest rates if 

the exchange rate depreciates (appreciates) from its equilibrium value under PPP assumption in the 

Taylor rule. Allowing the interest rate to achieve its target level within the period: 

                                                                                                            (6) 

and  is the nominal interest rate. Subtracting the Taylor rule equation for the foreign country from 

that for the base country, the U.S. (denoted by “0”), equation (6) becomes: 

                                           (7) 

Imposing the uncovered interest rate parity condition , the expected change 

in nominal exchange rates is equal to the interest differential: 

                                              (8) 

Molodtsova and Papell (2009) refer to the specification (8) as homogenous asymmetric 

Taylor rule with no smoothing. They estimate the parameters  and  in equation (8) country-by-

country in a rolling regression framework. Rather than estimating the coefficients, I follow the 

approach developed by Engel, Mark, and West (2008), who posit a Taylor rule such that =1.5, 

=0.1 and =0.1. Imposing fixed coefficients for all the countries is preferable for two reasons. 

First, increasing the number of parameters to be estimated in a panel may reduce the efficiency of 

forecasts and bring noise to the system. Second, this approach provides a better comparison of 

forecasts obtained with real-time data and those obtained with ex-post revised data in Engel, Mark, 

and West (2008). The Taylor rule fundamentals to be used in forecasting equation (1) become: 

                                            (9) 
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It is well known in the literature that the uncovered interest rate parity condition does not 

hold in the short run. With an error correction specification, the exchange rate forecasting 

model, , is used to generate out-of-sample forecasts both at the short-

horizon (where k=1) and the long-horizon (where k=16).  

 

4. Out-of-Sample Forecasting  

4.1 Estimation 

To produce out-of-sample forecasts, the sample has to be split into two components, in-

sample and out-of-sample. The in-sample component is updated recursively to estimate the 

parameters in equation (1) within both single-equation and panel frameworks. For single equation 

estimation, the parameters (constant and ) are estimated country-by-country with OLS. For panel 

estimation, the parameters (country-specific effects, time specific effects, and ) are estimated by 

least squares dummy variable (LSDV) method.  

Following Mark and Sul (2001) and Engel, Mark, and West (2008), the predictive regression 

is estimated through 1982:Q4. For k=1 (k=16), the predictive regression is used to forecast 1-step-

ahead (16-step-ahead) exchange rate returns in 1983:Q1 (1986:Q4). Then, the in-sample component 

is updated recursively by extending the sample up to 1983:Q1 and equation (1) is re-estimated at 

each step. For k=1 (k=16), the predictive regression is used to forecast 1-step-ahead (16-step-ahead) 

exchange rate returns in 1983:Q2 (1987:Q1), and the loop continues until the last observation. At 

the end, 105 forecasts for k=1 and 90 overlapping forecasts for k=16 are derived with both PPP and 

Taylor rule fundamentals.  
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One crucial point for multi-period ahead forecasts in the panel framework is that the time 

effect needs to be forecasted. For k-period ahead forecasts, the time effect in period t+k is 

calculated by taking the recursive mean of the time effect until period t, such as . 

4.2 Comparisons of Forecasts Based on MSPE 

 To compare the out-of-sample forecasting ability of the two nested models, this study 

focuses on the minimum mean-squared prediction error (MSPE) approach, which became dominant 

in the literature after Meese and Rogoff (1983a, 1983b). Forecasts of linear and random walk models 

are calculated as: 

Linear Model:                                       

Driftless Random Walk:                                                                                    (10) 

Random Walk with Drift:  

where  is the estimated drift term.10 Taking the difference between actual and predicted values of 

exchange rates gives the prediction error. The MSPE approach selects a model which has 

significantly smaller MSPE than the random walk with or without the drift.  

4.3 Out-of-Sample Test Statistics 

To measure the relative forecast accuracy of the linear model against the driftless random walk and 

the random walk with drift, I use two alternative test statistics: the Diebold-Mariano and West 

(DMW) and the Clark-West (CW) statistics. 

4.3.1 The Diebold-Mariano and West (DMW) Test 

 Suppose that a martingale difference process and a linear model are given as: 

                                                           

10 The recursive mean of the time effect in parenthesis for the linear model is removed in the single-equation 

case. 
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where the dependent variable is the change in the exchange rate. Under the null hypothesis, 

population parameter 0 and exchange rate follows a random walk. For simplicity let us 

concentrate on one-step-ahead forecasting. Assume that sample size is T+1; the first R observations 

are used for estimation and P is equal to the number of forecasts. So we have, T+1=R+P, where 

T+1=145, R=40 and P=105 for one-step-ahead forecasting. Information prior to  is used to 
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 Diebold and Mariano (1995) and West (1996) construct a t-type statistics which is assumed 
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
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 The DMW test statistic is   
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 The asymptotic DMW test works fine with non-nested models. However, the size properties 

of the asymptotic DMW test have been widely criticized for nested models. Clark and McCracken 

(2001, 2005) and McCracken (2007) show that the limiting distribution of the DMW test for nested 

models under the true null is not standard normal. Undersized DMW tests cause too few rejections 

of the null and may miss the statistical significance of the linear exchange rate model against the 

random walk.  

4.3.2 The Clark- West (CW) Test 

 Clark and West (2006, 2007) show that the sample difference between the MSPE’s of two 

nested models in DMW test is biased downward from zero in favor of the random walk. 
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Under the null hypothesis, the exchange rate follows a random walk, such that 11,21,1   ttt yee . 

Since the independent variables are not correlated with the disturbance term, the first term in 

equation (14) is equal to zero.11 Clark and West (2006, 2007) show that 
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true null (which are zero) brings noise into the forecasting process. Clark and West (2006) 

recommend an adjusted DMW statistic that adjusts for the negative bias in the difference between 

the two MSPE.  Defining the adjustments as follows,  

 2)ˆ
1

(2
1,2

ˆ
2

1,1
ˆ

1
ˆ

tt
X

t
ete

ADJ

tf 




  

                                 
 



















T

PTt

T

PTt

tt

ADJ

t

ADJ XPfPf
1 1

2

1

12

2

2

11

1 )ˆ(ˆˆˆ                             (15)                                                   






 
T

PTt

ADJADJ

t ffPV
1

2

1

1 )ˆ(ˆ  

  

 

the CW test statistic is 
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 The CW test has become one the most popular out-of-sample test statistic in the exchange 

rate literature. However, Rogoff and Stavrakeva (2008) show that the CW test cannot always be 

interpreted as a minimum MSPE test as the DMW test. Their study presents a proof that in the 

presence of forecast bias, the null hypothesis of the CW and the DMW tests are not necessarily the 

same.12 If one can reject the null of CW test, the true nature of exchange rate does not follow a 

random walk. Nevertheless, even if the true model follows some other model rather than a random 

walk, one can still apply the DMW statistics to test whether the random walk and the structural 

model have equal MSPEs. 

4.4 Bootstrapping Out-of-Sample Test Statistics 

 Size distortions of the DMW test in small samples can be reduced by bootstrapping the 

finite sample distribution of the test statistics. Kilian (1999) state that unlike asymptotic critical 

                                                           

12 In the presence of the scale bias, the null hypothesis of the CW and the DMW tests are different. 
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values, correctly specified (maintaining the cointegration between the exchange rate and 

fundamentals under the null hypothesis) bootstrap critical values adapt for the increase in the 

dispersion of the finite-sample distribution of the test statistic. Kilian (1999) also suggest that the 

bootstrap is appropriate for multi-period ahead forecasts. Based on simulation evidence, Li and 

Maddala (1997) and Li (2000) also indicate bootstrapped tests have smaller size distortions and 

higher test power than asymptotic tests in cointegrating systems. Howbeit, Berkowitz and Kilian 

(2000) emphasize the importance of bootstrapping type implemented to preserve cointegrating 

relationships in the data. They argue that cointegration appears to be a parametric notion and 

parametric bootstraps are more accurate than non-parametric ones. 

 Mark and Sul (2001) and Rogoff and Stavrakeva (2008) apply bootstrapped out-of-sample 

tests to detect forecasting ability of linear exchange rate models against random walk in a panel 

framework. The bootstrap methods are similar in both studies. Mark and Sul (2001) implement 

parametric bootstrap and estimate error correction equations with seemingly unrelated regressions 

(SURs); however, Rogoff and Stavrakeva (2008) use semi-parametric bootstrap and estimate error 

correction equations with country specific OLS regressions. 

 Having insignificant bootstrapped DMW test statistics in certain cases, as opposed to highly 

significant asymptotic CW test, Rogoff and Stavrakeva (2008) criticize the asymptotic CW test to be 

oversized and has less power than the bootstrapped DMW test in the presence of forecast bias.13 

Oversized asymptotic CW test would cause too many rejections of the null hypothesis that exchange 

rate does not follow a random walk. It may detect spurious statistical significance and favor the 

alternative, structural exchange rate model. In this paper, I evaluate the out-of-sample predictive 

ability of exchange rate fundamentals based on bootstrapped critical values for CW and DMW tests. 

                                                           

13 In the technical appendix of Clark and West (2007), the unadjusted power of the bootstrapped DMW test is 

higher than that of the asymptotic CW test for recursive regressions with one-step-ahead forecasts.  
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 The particular bootstrap method used (which imposes cointegration restriction between the 

exchange rate and the fundamentals) used in this study is as follows: 

it its  
                                                                                                 (17)
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s is the nominal exchange rate and 
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is the deviation of exchange rate from fundamental as 

defined in equation (1). s s s
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 and z z z
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 where k  is the forecast horizon, 

  is a constant and t  is a trend. To control for autocorrelation in the error correction equation 

(ECE) lags of s
it

 and z
it

 are included. Akaike’s information criterion is used for each country to 

determine the optimum number of d and l  and to figure out whether to include a constant or a 

trend or both in the ECE. The sum of coefficients on lags of z
it

 is restricted to 1. After specifying 

the data generating process for each country, equation (17) is estimated with country specific OLS 

regressions.  

The next step to perform the bootstrap is to configure the residual vectors. First, each residual 

vector at time t is constructed as 1 2 1 2
ˆ ˆ ˆˆ ˆ ˆ ˆ( , ,..., , , ,..., )t t t Nt t t Ntv u u u    . Second, (2 1)N   residual 

vectors 1 2
ˆ ˆ ˆ, ,...., Tv v v  are split into non-overlapping blocks of 4 adjacent observations. Let 

1 1 2 3 4
ˆ ˆ ˆ ˆ ˆ( , , , )w v v v v be the first block, and L be the number of blocks. I resample the residual blocks 

1 2
ˆ ˆ ˆ{ , ,..., }Lw w w  with replacement and simulate bootstrap observations of its  and itz recursively, 

where sample averages are chosen as starting values.  

This residual resampling scheme has two important features that need to be addressed. First, 

constructing the residual vectors as ˆˆ ˆ( , ) 't t tv u  account for the cross-sectional dependence in the 
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estimated residuals across countries. Second, resampling in blocks maintain the serial correlation 

properties of the residuals. 

To reduce the bias caused by the initial values of the recursion, the first 100 observations are thrown 

away and a new sample is created. Applying the estimation procedure again, test statistics are 

calculated with the pseudo-data. This process is repeated 1000 times and semi-parametric bootstrap 

distribution is derived. Since the tests considered are one-sided tests, the p-values of DMW and CW 

tests are the percentage of the bootstrapped distribution above the estimated test statistic using the 

realized data. 

 

5. Empirical Results 

 This section compares one- and 16-quarter-ahead out-of-sample performance of the linear 

exchange rate model with PPP and Taylor rule fundamentals to that of the random walk model with 

and without drift using a newly constructed real-time dataset. The tables report the MSPE ratio, the 

ratio of the MSPE of the structural model to that of the random walk, and the DMW and CW test 

statistics with their respective bootstrapped p-values. A significant DMW or CW test statistic implies 

that the linear exchange rate model outperforms the random walk with or without the drift out-of-

sample. 

5.1 PPP Fundamentals 

 One-quarter-ahead single-equation forecasting results with the PPP model are presented in 

Table 2. No evidence of out-of-sample predictability is found with the PPP model against the 

driftless random walk for any exchange rate. The out-of-sample performance of the PPP model 

improves against the random walk with drift. Short-term predictability is found for Canada with the 
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CW test and for 5 countries (Canada, Germany, Japan, Netherlands, and the U.K.) with the DMW 

test at the one-quarter horizon.  

 Panel one-quarter-ahead forecasts using PPP fundamentals in Table 3 are slightly better 

compared to single-equation forecasts in Table 2. The exchange rate model with PPP fundamentals 

using panel data significantly outperforms the driftless random walk only for Japan. The evidence of 

predictability of the PPP model with panel estimation, just like in the single-equation case, increases 

against the random walk with drift at one-quarter horizon. Short-term predictability is found for 4 

out of 9 countries (Australia, Canada, Japan, and Sweden) with the CW test and for Australia and 

Sweden with the DMW test.   

 The low predictive power of the PPP model at the one-quarter horizon using panel and 

single-equation estimations is not surprising. Existing studies concerning the half-life of PPP, the 

expected number of years for a PPP deviation to decay by 50%, find half-lives of around 2.5 years.14 

Accounting for the slow adjustment of real exchange rates in advanced economies, one would 

expect the predictive ability of PPP model to be low at short horizons.  

 Sixteen-quarter-ahead out-of-sample forecasts with the PPP model and single-equation 

estimation are presented in Table 4. The evidence of long-term predictability is stronger compared 

to one-quarter-ahead forecasts using the single-equation framework with rejections of the random 

walk null found for 4 countries (France, Germany, Netherlands, and Sweden) with the CW test. 

More evidence of long-term predictability is found against the random walk with drift. Out-of-

sample exchange rate predictability is found for 7 out of 9 countries (Australia, Canada, France, 

Germany, Japan, Netherlands, and Sweden) with the CW test and for 3 countries (Australia, Canada 

and Netherlands) with the DMW test. The out-of-sample predictability of the PPP model with a 

                                                           

14 See Wu (1996), Papell (1997, 2002), Murray and Papell (2002), Choi, Mark and Sul (2006) for details 

concerning the half-lives of PPP deviations.  
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single-equation framework is clearly improved at the l6-quarter horizon compared to one-quarter 

horizon.   

 The PPP model performs best with the panel specification at the 16-quarter horizon. As 

reported in Table 5, the evidence of predictability is found for 7 out of 9 countries (Australia, 

Canada, France, Germany, Japan, Netherlands, and Sweden) with the CW test, and for 5 out of 9 

countries (Australia, Canada, Germany, Japan, and Netherlands) with the DMW test against the 

driftless random walk. Panel forecasts at long horizon against the random walk with drift are, in fact, 

striking. Out-of-sample predictability is found for all the countries in the sample regardless of which 

test statistic is used. Because the persistence of deviation from PPP across countries is relatively 

homogenous, panel estimation becomes more efficient and the predictability of the panel exchange 

rate model with PPP fundamentals is much higher than the single-equation framework. 

5.2 Taylor Rule Fundamentals 

 Following Engel, Mark, and West (2008), predictive regressions using Taylor rule model are 

estimated where the coefficients on inflation, output gap, and real exchange rate are fixed at certain 

values. One-quarter-ahead single-equation forecasts with Taylor rule are reported in Table 6. 

Evidence of short-term predictability is found only for Japan against the driftless random walk.  The 

exchange rate model with Taylor fundamentals works much better against the random walk with 

drift. Evidence of out-of-sample predictability found for 3 out of 9 countries (Australia, Japan, and 

Sweden) with the CW test and for 5 out of 9 countries (Australia, Canada, Japan, Netherlands, and 

Sweden) with the DMW test. 

 Comparing Tables 6 and 7, the performance of Taylor rules does not get improved by panel 

estimation. Presence of substantial heterogeneity causes time-series regression forecasts to be 
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superior as suggested in Mark and Sul (2012).15 One-quarter ahead forecasting results for the Taylor 

rule model with a panel framework are reported in Table 7. No evidence of out-of-sample 

predictability is found against the driftless random walk regardless of which test statistic is used. The 

results are stronger against the random walk with drift. Evidence of predictability is found for 3 out 

of 9 countries (Australia, Japan, and Sweden) with the CW test and for 5 out of 9 countries 

(Australia, Germany, Japan, Netherlands, and Sweden) with the DMW test.  

 Table 8 presents 16-quarter-ahead single-equation forecasts using the Taylor rule model. 

Evidence of long-term predictability is found only for Germany with CW test against the driftless 

random walk. The single equation forecasts with the Taylor rule model perform better against the 

random walk with drift. Evidence of long-term predictability is found for Sweden with the CW test 

and for 4 out 9 countries (Australia, Japan, Netherlands, and Sweden) with the DMW test.  

  Panel forecasts with the Taylor rule model at the 16-quarter horizon perform poorly. As 

reported in Table 9, no evidence of either long-term predictability is found against the random walk, 

with or without drift, for any of the countries in the sample regardless of which test statistic is used. 

Low forecasting power of the Taylor rule model at the long horizon is reasonable because central 

banks target short-term nominal interest rates. These results are in accord with previous work using 

revised or quasi-real-time data. Molodtsova and Papell (2009) report that the evidence of short term 

predictability disappears at longer horizons with a single equation Taylor rule model, and Engel, 

Mark, and West (2008) do not find more evidence of predictability with panel models.  

 

6. Conclusions 

                                                           

15 Mark and Sul (2012) show that pooling does not dominate time-series regression in out-of-sample 

forecasting when the heterogeneity is great.  
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The purpose of this paper is to investigate how real-time data affects out-of-sample 

predictability of PPP and Taylor rule exchange rate models at short and long horizons using single-

equation and panel frameworks. The vast majority of empirical studies on exchange rate forecasting 

over the post-Bretton Woods period use ex-post revised data, which contain future information that 

was not available to policymakers and market participants at the time the forecasts were made. 

Therefore, it cannot be used to evaluate predictability of exchange rate models out-of-sample. 

Forecasts with real-time data, however, do not contain any unrealized future information in the 

information set of the linear model, mimic the information set of market agents as closely as 

possible, and thus can be used to construct a true out-of-sample forecast. 

Engel, Mark, and West (2008) find that panel error-correction exchange rate models with 

PPP fundamentals are able to produce large improvements in out-of-sample forecasting at longer 

horizons. Because they use ex-post revised data, the exchange rate models in their study contain 

future information that was not available to market participants. The results in this paper show that 

panel estimation increases the predictability of the PPP model relative to single-equation estimation. 

Having relatively homogenous deviations from PPP across countries cause panel estimation to be 

more efficient and estimating the predictive regression with panel data increases the forecasting 

power of the PPP model. At the 16-quarter horizon, evidence of predictability is found with panel 

estimation for 7 out of 9 countries with the CW test and 5 out of 9 countries with the DMW test 

against the driftless random walk and for all of the countries against the random walk with drift 

regardless of which test statistic is used. One-quarter-ahead forecasts of the exchange rate model 

with PPP fundamentals are weaker than long-horizon forecasts. Strong predictability of the PPP 

model at longer-horizons with panel estimation is in accord with estimated half-lives of PPP 

deviations of around 2.5 years, and confirms the findings in Engel, Mark, and West (2008).  
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Molodtsova and Papell (2009), using ex-post revised data to calculate inflation and quasi-real-time 

data to estimate output gaps, find evidence of out-of-sample exchange rate predictability with the 

Taylor rule model at short horizon using single-equation estimation. While quasi-real-time data does 

not contain future observations, it captures revisions which are not available to market participants 

in real-time. Therefore, quasi-real time data also cannot be used to produce true out-of-sample 

forecasts. Out-of-sample forecasting exercises in our study show that the predictability of the Taylor 

rule model is higher at the short horizon than at the long horizon as in Molodtsova and Papell 

(2009). Evidence of short-term predictability with the single-equation Taylor rule model is found for 

1 out of 9 countries with both test statistics against the driftless random walk, and for 3 out of 9 

countries with the CW test and 5 out of 9 countries with the DMW test against the random walk 

with drift. Since, central banks target short-term nominal interest rates, low predictive ability of 

Taylor rules at the long-horizon is not surprising. In contrast to PPP model, panel Taylor rule 

exchange rate models are unable to improve the forecasts compared to single-equation estimation, 

which is consistent with the results in Engel, Mark, and West (2008). Weak panel performance of 

Taylor rules suggest existence of substantial heterogeneity in adjustment to equilibrium. 
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Table 1. Descriptive Statistics 

 A. INFLATION 

 Real-Time Data Revised Data 

 Mean SD Min Max Mean SD Min Max 

Australia 5.901 4.005 -1.348 16.188 5.888 3.974 -0.389 16.188 

Canada 4.541 3.236 0.000 11.908 4.605 3.235 0.000 11.986 

France 4.862 3.980 0.345 14.004 4.854 3.990 0.193 14.084 

Germany 2.884 1.813 -1.078 7.470 2.862 1.823 -1.002 7.152 

Italy 7.478 5.608 1.293 22.048 7.444 5.628 1.384 22.011 

Japan 2.909 4.410 -1.396 20.403 2.910 4.522 -1.396 22.505 

Netherlands 3.439 2.539 -1.227 10.318 3.406 2.558 -1.206 10.312 

Sweden 5.163 3.879 -0.810 13.768 5.149 3.910 -0.995 13.694 

U.K. 6.479 5.076 1.034 22.530 6.403 5.088 1.034 23.433 

U.S. 4.525 2.843 1.207 13.504 4.544 2.853 1.207 13.543 

 B. OUTPUT GAP 

 Real-Time Data Revised Data 

 Mean SD Min Max Mean SD Min Max 

Australia -0.707 2.563 -9.209 8.894 0.063 2.919 -9.719 7.040 

Canada -0.899 2.045 -6.275 2.943 0.109 3.405 -13.339 6.152 

France -1.437 2.080 -9.639 3.150 0.065 2.413 -9.064 6.476 

Germany -1.025 1.928 -6.616 2.359 0.056 2.775 -8.078 6.344 

Italy -2.077 2.335 -8.289 2.671 0.057 3.266 -12.332 9.768 

Japan -1.526 2.764 -17.783 2.864 0.103 4.017 -12.105 11.792 

Netherlands -1.369 1.535 -7.142 2.862 -0.020 2.300 -7.179 5.419 

Sweden -0.558 2.177 -5.576 6.672 0.167 3.392 -11.496 6.692 

U.K. -0.949 1.825 -5.972 3.362 0.089 2.330 -5.914 7.654 

U.S. -0.909 2.577 -9.393 4.279 0.199 3.365 -11.478 6.970 

 

Notes: The statistics reported for each variable are: Mean, the mean, SD, the standard deviation, Min, and Max, the 
minimum and maximum values. The data is for 1973:Q1-2009:Q1. 
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Table 2. Single Equation 1-Quarter-Ahead Forecasts Using PPP Fundamentals 

No Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 1.0219 0.1770 0.5910 -0.6003 0.4730 

Canada 1.0058 0.2108 0.4240 -0.3231 0.2380 

France 1.0223 0.1191 0.3990 -0.6880 0.3120 

Germany 0.9975 0.7763 0.2290 0.0987 0.1290 

Italy 1.0739 0.2634 0.6870 -1.5571 0.7980 

Japan 0.9918 0.9504 0.3530 0.3329 0.1700 

Netherlands 1.0012 0.5748 0.3110 -0.0486 0.1710 

Sweden 1.0217 0.6944 0.3700 -0.8252 0.5080 

U.K. 1.0179 0.2829 0.4100 -0.5022 0.3050 

Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 1.0068 0.3595 0.2850 -0.2165 0.1960 

Canada 0.9878 1.1801 0.0800 0.6040 0.0360 

France 0.9978 0.6150 0.2130 0.1194 0.1230 

Germany 0.9897 1.0355 0.1070 0.4836 0.0500 

Italy 1.0197 -1.1403 0.8340 -1.4620 0.7430 

Japan 0.9964 0.6673 0.1870 0.2881 0.0980 

Netherlands 0.9925 0.9005 0.1340 0.3739 0.0710 

Sweden 0.9991 1.1124 0.1410 0.0473 0.1670 

U.K. 0.9970 0.5721 0.1970 0.1643 0.0890 

 
Notes: The table reports the MSPE ratio, defined as the ratio of MSPEs of the linear exchange rate model to that of the 
benchmark model (random walk with and without the drift), the CW statistics and the DMW statistics for the tests of 
equal MSPEs. All reported tests are one-sided. Bold font denotes the p-value of respective test statistic significant at 10 
% level based on semi-parametric bootstrap. Starting in 1973:Q1, I estimate recursive regressions with a 40-quarter initial 
window to predict exchange rate changes from 1983:Q1 to 2009:Q1. 
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Table 3. Panel 1-Quarter-Ahead Forecasts Using PPP Fundamentals 

No Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 0.9870 1.0847 0.3030 0.4723 0.1830 

Canada 0.9938 0.8499 0.2640 0.2249 0.1880 

France 1.0084 0.0201 0.3770 -0.4093 0.2990 

Germany 0.9876 1.1311 0.1680 0.4429 0.1320 

Italy 1.0519 0.3837 0.5510 -0.9149 0.7320 

Japan 0.9726 2.0353 0.0870 1.5247 0.0400 

Netherlands 0.9926 0.8988 0.1880 0.3024 0.1370 

Sweden 0.9907 0.7144 0.3360 0.3540 0.1870 

U.K. 1.0042 0.6631 0.3040 -0.1231 0.3070 

Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 0.9725 1.6333 0.0710 1.0345 0.0960 

Canada 0.9761 1.5325 0.0850 0.6836 0.1730 

France 0.9842 1.1510 0.1360 0.6060 0.2510 

Germany 0.9799 1.3525 0.1070 0.7937 0.1620 

Italy 0.9987 0.5847 0.2830 0.0490 0.4330 

Japan 0.9772 1.4911 0.0810 0.8698 0.1330 

Netherlands 0.9840 1.1972 0.1370 0.6509 0.1910 

Sweden 0.9687 1.8830 0.0500 1.0867 0.0930 

U.K. 0.9836 1.2211 0.1180 0.7057 0.2280 

 
Notes: The table reports the MSPE ratio, defined as the ratio of MSPEs of the linear exchange rate model to that of the 
benchmark model (random walk with and without the drift), the CW statistics and the DMW statistics for the tests of 
equal MSPEs. All reported tests are one-sided. Bold font denotes the p-value of respective test statistic significant at 10 
% level based on semi-parametric bootstrap. Starting in 1973:Q1, I estimate recursive regressions with a 40-quarter initial 
window to predict exchange rate changes from 1983:Q1 to 2009:Q1. 
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Table 4. Single Equation 16-Quarter-Ahead Forecasts Using PPP Fundamentals 

No Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 1.3393 1.1002 0.2680 -0.7412 0.5240 

Canada 1.0883 0.6955 0.2550 -0.2140 0.2400 

France 2.0458 2.0382 0.0180 -0.9436 0.4540 

Germany 1.4950 2.6105 0.0080 -0.4662 0.3230 

Italy 2.9815 0.6797 0.4050 -0.9610 0.5280 

Japan 1.0300 1.0890 0.3020 -0.0642 0.3300 

Netherlands 0.8441 2.4793 0.0180 0.1788 0.1180 

Sweden 2.9874 2.2454 0.0220 -1.5296 0.6960 

U.K. 2.1290 0.5006 0.3480 -0.6647 0.3610 

Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 0.7913 4.3300 0.0000 0.7716 0.0170 

Canada 0.7596 2.2683 0.0150 0.8363 0.0250 

France 1.1539 3.8812 0.0020 -0.2461 0.2980 

Germany 1.3551 2.7336 0.0050 -0.3689 0.5770 

Italy 1.1597 1.0209 0.1500 -0.1992 0.2510 

Japan 1.0042 2.5483 0.0030 -0.0093 0.1820 

Netherlands 0.7356 2.8317 0.0040 0.3482 0.0730 

Sweden 1.7764 4.2205 0.0010 -1.0049 0.8000 

U.K. 1.0219 0.9871 0.1930 -0.0269 0.2160 

 
Notes: The table reports the MSPE ratio, defined as the ratio of MSPEs of the linear exchange rate model to that of the 
benchmark model (random walk with and without the drift), the CW statistics and the DMW statistics for the tests of 
equal MSPEs. All reported tests are one-sided. Bold font denotes the p-value of respective test statistic significant at 10 
% level based on semi-parametric bootstrap. Starting in 1973:Q1, I estimate recursive regressions with a 40-quarter initial 
window to predict exchange rate changes from 1983:Q1 to 2009:Q1. 
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Table 5. Panel 16-Quarter-Ahead Forecasts Using PPP Fundamentals 

No Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 0.7614 1.6545 0.0920 0.6718 0.0990 

Canada 0.6711 1.6328 0.0540 0.8875 0.0390 

France 0.8818 1.2697 0.0560 0.2028 0.1310 

Germany 0.4211 2.3768 0.0170 0.9245 0.0480 

Italy 2.0116 0.4540 0.4410 -0.7276 0.6040 

Japan 0.6032 2.6244 0.0380 1.5011 0.0430 

Netherlands 0.4651 2.3258 0.0120 0.9939 0.0290 

Sweden 0.4975 1.6649 0.0910 0.6658 0.1040 

U.K. 1.4518 0.3979 0.3340 -0.3942 0.3810 

Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 0.4499 5.6980 0.0000 2.6217 0.0010 

Canada 0.4684 3.6361 0.0000 2.0548 0.0020 

France 0.4973 3.3588 0.0000 1.5287 0.0070 

Germany 0.3817 2.5197 0.0050 1.0893 0.0210 

Italy 0.7825 1.0278 0.0360 0.4021 0.0980 

Japan 0.5881 4.1808 0.0000 1.5983 0.0030 

Netherlands 0.4053 2.7490 0.0010 1.2681 0.0070 

Sweden 0.2958 3.4463 0.0020 1.5690 0.0100 

U.K. 0.6968 1.2608 0.0310 0.5513 0.0910 

 
Notes: The table reports the MSPE ratio, defined as the ratio of MSPEs of the linear exchange rate model to that of the 
benchmark model (random walk with and without the drift), the CW statistics and the DMW statistics for the tests of 
equal MSPEs. All reported tests are one-sided. Bold font denotes the p-value of respective test statistic significant at 10 
% level based on semi-parametric bootstrap. Starting in 1973:Q1, I estimate recursive regressions with a 40-quarter initial 
window to predict exchange rate changes from 1983:Q1 to 2009:Q1. 
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Table 6. Single Equation 1-Quarter-Ahead Forecasts Using Taylor Rule Fundamentals 

No Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 0.9914 1.2537 0.2770 0.2250 0.1870 

Canada 1.0060 0.5849 0.4260 -0.2338 0.2950 

France 1.0527 -1.3383 0.8850 -1.9355 0.8420 

Germany 1.0147 0.6132 0.2610 -0.3617 0.1930 

Italy 1.0597 -0.3097 0.7610 -1.4349 0.7930 

Japan 0.9652 1.9937 0.0980 1.4085 0.0160 

Netherlands 1.0048 0.4043 0.3110 -0.1809 0.1300 

Sweden 1.0100 1.0844 0.3590 -0.2601 0.3690 

U.K. 1.0333 -1.1452 0.9140 -1.6155 0.7970 

Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 0.9786 1.6592 0.0910 1.2498 0.0420 

Canada 0.9858 1.1145 0.1970 0.8788 0.0500 

France 1.0213 -1.5723 0.9180 -1.7368 0.8370 

Germany 1.0048 0.6663 0.2600 -0.1424 0.1710 

Italy 1.0060 0.7238 0.2620 -0.1340 0.1970 

Japan 0.9697 1.9859 0.0190 1.6030 0.0040 

Netherlands 0.9934 0.7929 0.1550 0.2549 0.0640 

Sweden 0.9773 1.6497 0.0950 1.1215 0.0430 

U.K. 1.0092 -0.5116 0.6950 -0.7419 0.4270 

 
Notes: The table reports the MSPE ratio, defined as the ratio of MSPEs of the linear exchange rate model to that of the 
benchmark model (random walk with and without the drift), the CW statistics and the DMW statistics for the tests of 
equal MSPEs. All reported tests are one-sided. Bold font denotes the p-value of respective test statistic significant at 10 
% level based on semi-parametric bootstrap. Starting in 1973:Q1, I estimate recursive regressions with a 40-quarter initial 
window to predict exchange rate changes from 1983:Q1 to 2009:Q1. 
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Table 7. Panel 1-Quarter-Ahead Forecasts Using Taylor Rule Fundamentals 

No Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 1.0014 0.8280 0.4240 -0.0426 0.4200 

Canada 1.0094 0.4920 0.4970 -0.4324 0.5090 

France 1.0314 -0.5309 0.6310 -1.1586 0.6250 

Germany 1.0022 0.3006 0.4100 -0.1204 0.3180 

Italy 1.0725 0.1114 0.6670 -1.3378 0.8510 

Japan 0.9848 1.2875 0.3070 0.5006 0.2240 

Netherlands 1.0056 -0.0354 0.5230 -0.3726 0.3760 

Sweden 1.0185 0.3264 0.6200 -0.6734 0.7060 

U.K. 1.0292 -0.1793 0.5930 -0.9453 0.5560 

Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 0.9884 2.0224 0.0920 1.8584 0.0780 

Canada 0.9891 1.4148 0.2490 1.2825 0.1590 

France 1.0006 0.0641 0.5590 -0.0969 0.4500 

Germany 0.9924 1.5397 0.1470 1.4379 0.0830 

Italy 1.0183 -1.3881 0.9350 -1.6899 0.9180 

Japan 0.9894 1.8692 0.0330 1.7603 0.0260 

Netherlands 0.9940 1.1742 0.1510 1.0690 0.0960 

Sweden 0.9856 2.1221 0.0730 2.0224 0.0490 

U.K. 1.0052 -0.4187 0.6400 -0.6499 0.5510 

 
Notes: The table reports the MSPE ratio, defined as the ratio of MSPEs of the linear exchange rate model to that of the 
benchmark model (random walk with and without the drift), the CW statistics and the DMW statistics for the tests of 
equal MSPEs. All reported tests are one-sided. Bold font denotes the p-value of respective test statistic significant at 10 
% level based on semi-parametric bootstrap. Starting in 1973:Q1, I estimate recursive regressions with a 40-quarter initial 
window to predict exchange rate changes from 1983:Q1 to 2009:Q1. 
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Table 8. Single Equation 16-Quarter-Ahead Forecasts Using Taylor Rule Fundamentals 

No Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 1.3755 0.3071 0.4580 -0.6126 0.4530 

Canada 1.3806 -0.4763 0.6630 -1.3708 0.6860 

France 3.1752 0.2036 0.4070 -1.4136 0.5550 

Germany 1.0439 1.5246 0.0780 -0.0514 0.1650 

Italy 3.7153 0.0230 0.5870 -1.4449 0.6680 

Japan 0.9203 0.7005 0.4560 0.2044 0.2510 

Netherlands 1.0795 0.8599 0.2060 -0.1441 0.1700 

Sweden 1.5230 0.5261 0.3940 -0.6842 0.4550 

U.K. 2.9587 -0.5476 0.6550 -1.3239 0.4770 

Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 0.8639 0.7102 0.1490 0.3535 0.0940 

Canada 0.9302 0.4608 0.2500 0.3733 0.1020 

France 1.5964 1.0529 0.2090 -0.7708 0.4570 

Germany 0.8746 1.5925 0.1180 0.1755 0.1490 

Italy 1.4247 -0.0450 0.6050 -0.5894 0.5280 

Japan 0.8974 0.6737 0.1440 0.2698 0.0910 

Netherlands 0.8547 1.3971 0.1050 0.3329 0.0940 

Sweden 0.7617 1.4365 0.0560 0.6234 0.0560 

U.K. 1.3117 -0.3061 0.6110 -0.4753 0.3860 

 
Notes: The table reports the MSPE ratio, defined as the ratio of MSPEs of the linear exchange rate model to that of the 
benchmark model (random walk with and without the drift), the CW statistics and the DMW statistics for the tests of 
equal MSPEs. All reported tests are one-sided. Bold font denotes the p-value of respective test statistic significant at 10 
% level based on semi-parametric bootstrap. Starting in 1973:Q1, I estimate recursive regressions with a 40-quarter initial 
window to predict exchange rate changes from 1983:Q1 to 2009:Q1. 
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Table 9. Panel 16-Quarter-Ahead Forecasts Using Taylor Rule Fundamentals 

No Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 1.4467 -0.0038 0.5630 -0.7712 0.5620 

Canada 1.4097 -0.6368 0.7500 -1.4443 0.7430 

France 2.0068 -0.8928 0.7910 -1.4713 0.7590 

Germany 1.0488 0.2465 0.4600 -0.1870 0.3850 

Italy 2.5953 -0.2666 0.7200 -1.3622 0.7940 

Japan 0.9283 0.7547 0.4440 0.1388 0.3430 

Netherlands 1.1738 -0.5536 0.7120 -0.8821 0.5660 

Sweden 1.7350 -0.3142 0.6690 -1.0647 0.6920 

U.K. 1.8665 -0.4944 0.6240 -0.9460 0.4790 

Drift 

 MSPE ratio CW P-value DMW P-value 

Australia 0.9086 0.3606 0.2650 0.2513 0.1550 

Canada 0.9498 0.3397 0.3420 0.2625 0.1880 

France 1.0088 0.1881 0.5950 -0.0258 0.5070 

Germany 0.8786 0.7962 0.3330 0.5564 0.2400 

Italy 0.9953 0.1283 0.6430 0.0105 0.4970 

Japan 0.9052 0.2868 0.2570 0.1881 0.2020 

Netherlands 0.9293 0.7348 0.2550 0.4532 0.1800 

Sweden 0.8678 0.5384 0.2030 0.3829 0.1550 

U.K. 0.8275 0.5368 0.2380 0.4247 0.1360 

 

Notes: The table reports the MSPE ratio, defined as the ratio of MSPEs of the linear exchange rate model to that of the 

benchmark model (random walk with and without the drift), the CW statistics and the DMW statistics for the tests of 

equal MSPEs. All reported tests are one-sided. Bold font denotes the p-value of respective test statistic significant at 10 

% level based on semi-parametric bootstrap. Starting in 1973:Q1, I estimate recursive regressions with a 40-quarter initial 

window to predict exchange rate changes from 1983:Q1 to 2009:Q1. 


